Abstract
The parareal algorithm, which permits us to solve evolution problems in a time parallel fashion, has created a lot of attention over the past decade. The algorithm has its roots in the multiple shooting method for boundary value problems, which in the parareal algorithm is applied to initial value problems, with a particular coarse approximation of the Jacobian matrix. It is therefore of interest to formulate parareal-type algorithms for time-periodic problems, which also couple the end of the time interval with the beginning, and to analyze their performance in this context. We present and analyze two parareal algorithms for time-periodic problems: one with a periodic coarse problem and one with a nonperiodic coarse problem. An interesting advantage of the algorithm with the nonperiodic coarse problem is that no time-periodic problems need to be solved during the iteration, since on the time subdomains, the problems are not time-periodic either. We prove for both linear and nonlinear problems convergence...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.