Abstract

The Parareal algorithm, which is related to multiple shooting, was introduced for solving evolution problems in a time-parallel manner. The algorithm was then extended to solve time-periodic problems. We are interested here in time-periodic systems which are forced with quickly-switching discontinuous inputs. Such situations occur, e.g., in power engineering when electric devices are excited with a pulse-width-modulated signal. In order to solve those problems numerically we consider a recently introduced modified Parareal method with reduced coarse dynamics. Its main idea is to use a low-frequency smooth input for the coarse problem, which can be obtained, e.g., from Fourier analysis. Based on this approach, we present and analyze a new Parareal algorithm for time-periodic problems with highly-oscillatory discontinuous sources. We illustrate the performance of the method via its application to the simulation of an induction machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.