Abstract

Nickel-based superalloy GH4169 is a material with strong mechanical properties and is difficult to process. In order to reduce tool wear during material processing and improve the workpiece surface processing quality, based on the finite element simulation software DEFORM, the influence of n, ap, and fz parameters on tool wear during carbide tool milling GH4169 was studied, and a simulation of an orthogonal experimental model was established. The prediction model of tool wear was obtained. The ultrasonic vibration milling was compared with ordinary milling, and the improvement degree of different coating materials on carbide tool wear was explored. The results showed that the ultrasonic vibration signal is helpful to reduce tool wear, improve the surface quality of the workpiece, and improve the stability of the milling process. TiAlN/TiN (WC)-composite-coated tools have good cutting performance, help to reduce tool temperature, reduce tool wear, and improve tool life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call