Abstract

PurposeThe purpose of this paper is to analyze the variations in the neutral plane when a tall space with unsymmetrical openings is on fire. The neutral plane of the fire scene is an important index of a natural smoke exhaust system. The numerical simulation method and the Schlieren photography technique were used as analysis tools. The results of model experiments and numerical simulation were compared with each other to confirm the rationality of the conclusions. The results were to discuss the characteristics of various cases and showed that the neutral planes of the fire scene were not always horizontal.Design/methodology/approachThe numerical simulation method and the Schlieren photography technique were used as analysis tools. The flow patterns of hot air in various cases were recorded using the flow visualization technique. In addition, the renowned simulation software, fire dynamics simulator (FDS), was used for case analysis. The Schlieren photography technique was used for 1/12.5 model experiments with six smokeless candles burned, and FDS was used for a numerical simulation. In terms of the case of unilateral vents, the exhaust efficiency was discussed when the exhaust vent and air inlet were located on the same side or different sides.FindingsThis study demonstrates that makeup air flowing in from the inlets and openings has a significant impact on the effectiveness of natural smoke exhaust systems. The results illustrated that the neutral planes were tilted in some cases. In some cases, the results showed that one side was the air inlet and the other side was the exhaust vent, even if the openings were at the same height in some cases. These phenomena have rarely been discovered or studied in the past. The exhaust efficiency was not always better when the vent was located in the rooftop.Originality/valueThis study analyzed the neutral plane of a fire scene using the common unsymmetrical opening spaces in the Taiwan region as an example. The phenomenon of non-horizontal neutral plane has rarely been studied in the past. The temperature of the discharged hot gas was low because of an efficient exhaust effect, which reduced the heat and smoke storage in the space. The results obtained by these two methods were consistent, and showed that the cases with the same opening area had different smoke extraction efficiencies, meaning the smoke extraction effect cannot be judged only by the opening areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.