Abstract

This paper presents an extended oblique machining theory applicable to the analysis of 3-D machining. Existing theories are evaluated to identify suitable formulations which are used with necessary modifications for predicting various quantities pertaining to cutting conditions of three dimensional machining. Actual chip flow angles extracted from measured forces, to account for the nose radius effect, are used, instead of available models, to predict important quantities such as shear plane angle, effective rake angle and shear flow angle. Experiments are conducted in the realms of conventional and high speed machining using AISI 4140 steel and aluminum 7075-T6 respectively with uncoated carbide inserts, and various process conditions pertaining to the cutting mechanics are calculated. The extended oblique machining theory is experimentally validated in predicting temperatures at the tool-chip interface and shear plane for conventional machining. Simulation results from the finite element modeling are used for verifying the shear stress and shear plane temperature predicted by the extended oblique machining theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.