Abstract

This paper is concerned with the application of standard 3D Boundary Element Methods to solve thin-walled structural elements (needle-like/shell-like solids). A subregion-by-subregion data structure, incorporating iterative solvers and discontinuous boundary elements, is presented. To efficiently and accurately evaluate the quasi-singular integrals, special quadrature methods are applied. In addition, structured matrix-vector products, designed to avoid the excessive number of conditional tests during solver iterations, are proposed. Numerical results for complex thin-walled BE models are validated by comparison with FEM calculations and previously published BEM analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.