Abstract

The stresses near a crack which has a fluid escaping through it are presented in this paper. The pressure and heat flux, due to the fluid acting on the crack walls, are imposed as boundary conditions in a new finite element tool which has been developed specifically for Leak-before-Break. This special tool uses the extended finite element method to include information about the problem on a sub element level. It is shown to be as accurate as standard finite element models which use very refined meshes, but having the added benefit of being much quicker to implement, and vastly reducing postprocessing. This means that leak rates can be investigated more efficiently. The model is thermo-elastic, and plasticity is accounted for by a correction to the crack opening displacement based on the R6 method. Both crack opening area and peak stresses are shown to decrease when the walls of the crack are hotter than the background plate temperature. The consequences of this for Leak-before-Break assessments are discussed in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.