Abstract
The Rolling contact fatigue (RCF) damage of high-speed wheels is a main factor that affects railway safety. This paper presents a Finite element model (FEM) of high-speed transient rolling contact that considers kinetic parameters as initial conditions. This model is used to calculate wheel/rail RCF. With a CRH2 high-speed train as the research object, a head car model is established with the multibody dynamics software UM. The train is driven on a straight track at a speed of 300 km/h. Different contact geometric parameters, such as lateral displacement and attack angle, are obtained. A 3D high-speed transient elastic-plastic FEM of wheel/rail rolling contact is then developed by using ABAQUS with the initial dynamic contact geometric parameters. The actual geometries of the wheel tread and rail head as well as the elastic-plastic properties are considered in this model. This consideration makes the model highly suitable for solving 3D transient rolling contact behavior. The normal force, creep force, and contact area in the contact patch are solved and used in the fatigue model. Owing to the hunting movement of wheels, the wheel/rail force and lateral displacement change significantly at 0.2 and 0.5 s. The longitudinal and lateral creep force increase sharply with the increase in shear stress. The work states of the wheel/rail at 0.2 and 0.5 s easily reach the ratchet effect zone, and the fatigue index is large. The fatigue damage of the wheels is generally near the nominal rolling circle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have