Abstract

The specificity of overhead power lines is associated with the fact that the length of conductors between the supporting structures can reach tens of thousands of meters. Wires and their components are exposed to climatic factors, viz. wind, rain, ice, snow. As compared to other structural elements, conductors are of the highest flexibility and lowest rigidity, and, therefore, they are the most sensitive elements to these effects. Since the early fifties of the XX century, the increase in energy consumption has caused the construction of high and ultra-high voltage overhead lines with split phases. For these types of conductors, new forms of oscillations have been noticed in the areas between the struts, the essence of which is torqueing the split phase. As a result, there is a violation of the torsional stability of the phase: collision of wires in the middle of sub-span and friction of wires of stranded conductor against each other, which leads to damaging conductors and, as a consequence, to disruption of power supply to consumers. Almost any overhead lines may be subjected to oscillations of wires in the span under the influence of wind. One of the types of such mechanical oscillations is galloping, i. e. low-frequency oscillations of wires with an amplitude reaching the value of the boom of wire sagging, and, taking into account the possibility of elongation of the wire, even exceeding it. Fluctuations in the galloping can cause significant mechanical forces and last long enough to lead to the destruction of structural elements of power lines, viz. wires, insulators, fittings and even pillars. Due to the large amplitude of oscillations, conductors of neighboring phases can approach each other at an unacceptable distance, resulting in a short circuit. The boundary value problem of the torsional stability calculation of the split phase with a given multiplicity of splitting has been set and solved. The critical lengths of the sub-spans at which the stable violation of torsional stability is most likely have been determined. A computer program has been developed, which can be used in the design of high-voltage lines with split phase.

Highlights

  • Проектирование высоковольтных линий электропередачи (ЛЭП) требует исследования поведения проводов в неблагоприятных климатических условиях: при воздействии ветра, гололеда и электродинамических усилий при коротком замыкании

  • Один из видов субколебаний расщепленных фаз – крутильные колебания, которые могут преобладать по амплитуде по сравнению с другими видами и по этой причине использоваться для количественной оценки устойчивости воздушных линиях (ВЛ) при пляске [2]

  • Torsional stability of the split phase depending on the number of struts in the span

Read more

Summary

Introduction

Проектирование высоковольтных линий электропередачи (ЛЭП) требует исследования поведения проводов в неблагоприятных климатических условиях: при воздействии ветра, гололеда и электродинамических усилий при коротком замыкании. При пляске расщепленной фазы наиболее часто наблюдаются так называемые субколебания – колебания проводов в субпролетах. Для анализа крутильных колебаний использована расчетная модель расщепленной фазы с сосредоточенными моментами заданной величины и времени действия, прилагаемыми в месте крепления распорки к элементарному проводнику. Для анализа крутильной стабильности расщепленной фазы была модифицирована компьютерная программа LINEDYS+

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call