Abstract
Metamaterial absorbers typically consist of a metamaterial layer, a dielectric spacer layer, and a metallic ground plane. We have investigated the dependence of the metamaterial absorption maxima on the spacer layer thickness and the reflection coefficient of the metamaterial layer obtained in the absence of the ground plane layer. Specifically, we employ interference theory to obtain an analytical expression for the spacer thickness needed to maximize the absorption at a given frequency. The efficacy of this simple expression is experimentally verified at terahertz frequencies through detailed measurements of the absorption spectra of a series of metamaterials structures with different spacer thicknesses. Using an array of split-ring resonators (SRRs) as the metamaterial layer and SU8 as the spacer material we observe that the absorption peaks redshift as the spacer thickness is increased, in excellent agreement with our analysis. Our findings can be applied to guide metamaterial absorber designs and understand the absorption peak frequency shift of sensors based on metamaterial absorbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.