Abstract

We present a superconducting metamaterial saturable absorber at terahertz frequencies. The absorber consists of an array of split ring resonators (SRRs) etched from a 100nm YBaCu3O7 (YBCO) film. A polyimide spacer layer and gold ground plane are deposited above the SRRs, creating a reflecting perfect absorber. Increasing either the temperature or incident electric field (E) decreases the superconducting condensate density and corresponding kinetic inductance of the SRRs. This alters the impedance matching in the metamaterial, reducing the peak absorption. At low electric fields, the absorption was optimized near 80% at T=10K and decreased to 20% at T=70K. For E=40kV/cm and T=10K, the peak absorption was 70% decreasing to 40% at 200kV/cm, corresponding to a modulation of 43%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.