Abstract

Thermal transport simulations were performed to investigate the important factors affecting the thermal conductivity based on the structure of semi-crystalline polyetheretherketone (PEEK), and the addition of boron nitride (BN) sheets. The molecular-level structural analysis facilitated the prediction of the thermal conductivity of the optimal structure of PEEK reflecting the best parameter value of the length of amorphous chains, and the ratio of linkage conformations, such as loops, tails, and bridges. It was found that the long heat transfer paths of polymer chains were induced by the addition of BN sheets, which led to the improvement of the thermal conductivities of the PEEK/BN composites. In addition, the convergence of the thermal conductivities of the PEEK/BN composites in relation to BN sheet size was verified by the disconnection of the heat transfer path due to aggregation of the BN sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.