Abstract

In order to study the corrosive wear presented in the (Si3N4 and Al2O3) individual layers and the [Si3N4/Al2O3]n heterostructure as a function of the bilayers number (n = 1, 10, 30 and 70), exposed to a highly aggressive environments. This research presents a exhaustive analysis of the structural, chemical and surface properties, which influenced the corrosion response of these coatings. The results showed that the heterostructure presented better properties than the individual coatings, and that when the bilayers number increased, these properties also increased. Thus, the [Si3N4/Al2O3] heterostructure formed by 70 bilayers, presented values of 4.1 nm, 161 nm and 1.79% approximately for roughness, grain size and porosity factor, respectively, which represents a decrease of 51%, 82% and 23% of these properties in comparison to the heterostructure formed by 1 bilayer. Finally, these structural and surface conditions resulted in a 90% increase in polarization resistance and a 95% decrease in corrosion rate when comparing the n = 70 bilayers heterostructure with the n = 1 bilayer. Concluding that the [Si3N4/Al2O3] heterostructure formed by 70 bilayers presented the best set of properties to be implemented in highly corrosive environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.