Abstract

A circular thrust bearing with inherently compensated feedholes evenly distributed around an interior radius is analyzed. The feedhole boundary between the central disk region and exterior annular region is modeled as a line source. A periodic load disturbance is imposed on the bearing, and the dynamic pressure distribution is determined by small perturbations of the Reynolds equation. The solution is given in terms of Kelvin functions. Design curves are presented for the stiffness and damping as a function of squeeze number, external pressure, restrictor coefficient and feedhole location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call