Abstract
In $\gamma $ -ray detectors, monolithic scintillation crystals offer the possibility of preserving the scintillation light distribution especially when painted black. The statistical moments of this distribution provide accurate information on the three photon impact coordinates, including their depth of interaction (DOI). Digital SiPMs (dSiPMs) return digital information based on pixels about the collected light distribution, since the signal is a digital sum of the trigger bins. In this work we present, for the first time, an accurate analysis of the statistical moments of the light distribution using monolithic painted black crystals and state-of-the-art dSiPMs. Two $32.6 \times 32.6 ~\hbox{mm}^2$ monolithic LYSO crystals covering the entire photodetectors area have been used in coincidence with 10 mm in thickness. The photosensor tiles were kept at a stable temperature of ${\rm T} = 20\,^\circ{\hbox {C}}$ . Energy resolution of about 18% was reached in relation to the zeroth moment. The first moment, related to the impact position, determined a spatial resolution of about 3 mm near the crystal center, but quadratically degrading towards the crystal borders. The DOI resolution, measured by means of the second moment, was found to be nearing 4 mm in the crystal center region. The third order moment, the so-called skewness, is related to the degree of truncation and once calibrated minimizes the compression effects. A corrected spatial resolution of about 3 mm was then measured for the entire crystal surface. DOI resolution improved at the crystal’s center, reaching 3.5 mm, but a degradation towards the borders remained due to truncation of the scintillation light distribution.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have