Abstract

Since the 1970s, land subsidence has been rapidly developing on the Beijing Plain, and the systematic study of the evolutionary mechanism of this subsidence is of great significance in the sustainable development of the regional economy. On the basis of Interferometric Synthetic Aperture Radar (InSAR) results, this study employed the Mann–Kendall method for the first time to determine the mutation information of land subsidence on the Beijing Plain from 2004 to 2015. By combining the hydrogeological conditions, “southern water” project, and other data, we attempted to analyse the reasons for land subsidence mutations. First, on the basis of ENVISAT ASAR and RADARSAT-2 data, the land subsidence of the Beijing Plain was determined while using small baseline interferometry (SBAS-InSAR) and Persistent Scatterers Interferometry (PSI). Second, on the basis of the Geographic Information System (GIS) platform, vector data of displacement under different scales were obtained. Through a series of tests, a scale of 960 metres was selected as the research unit and the displacement rate from 2004 to 2015 was obtained. Finally, a trend analysis of land subsidence was carried out on the basis of the Mann–Kendall mutation test. The results showed that single-year mutations were mainly distributed in the middle and lower parts of the Yongding River alluvial fan and the Chaobai River alluvial fan. Among these mutations, the greatest numbers occurred in 2015 and 2005, being 1344 and 915, respectively. The upper and middle alluvial fan of the Chaobai River, the vicinity of the emergency water sources, and the edge of the groundwater funnel have undergone several mutations. Combining hydrogeological data of the study area and the impact of the south-to-north water transfer project, we analysed the causes of these mutations. The experimental results can quantitatively verify the mutation information of land subsidence in conjunction with time series to further elucidate the spatial-temporal variation characteristics of land subsidence in the study area.

Highlights

  • IntroductionLand subsidence is a geological phenomenon that is caused by human engineering activities (e.g., groundwater exploitation) or natural factors, and, in this phenomenon, the ground elevation within a certain area decreases [1,2]

  • Land subsidence is a geological phenomenon that is caused by human engineering activities or natural factors, and, in this phenomenon, the ground elevation within a certain area decreases [1,2]

  • On the basis of the surface deformation information that was monitored by SBAS-Interferometric Synthetic Aperture Radar (InSAR) and Quasi-PS InSAR technology (QPS), a displacement rate distribution map was obtained for the Beijing Plain

Read more

Summary

Introduction

Land subsidence is a geological phenomenon that is caused by human engineering activities (e.g., groundwater exploitation) or natural factors, and, in this phenomenon, the ground elevation within a certain area decreases [1,2]. More than 150 countries and regions worldwide have suffered from land subsidence, among which the most severe areas are central Mexico [7,8], central Iran [9,10], the Bandung basin of Indonesia [11], and northern Italy [12,13]. In China, land subsidence has mainly occurred on the North China Plain and within the Yangtze River Delta, the Fenwei Basin, and the Pearl River Delta [6,14,15,16,17,18,19]. Land subsidence on the North China Plain (the Beijing-Tianjin-Hebei region) continues to increase, the subsidence within the Yangtze River Delta region has been effectively controlled, and the subsidence within the Fenwei Basin region is still rapidly developing

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.