Abstract

The size effect in electroplated copper wires has been widely studied recently. However, there is no consensus on the role of various scattering mechanisms. Therefore, an in-depth analysis to reveal the origin of the size effect is needed. In this article, we study the resistivity of fine copper wires whose feature sizes shrink in two dimensions. It is shown that the residual resistivity (at 5 K) increases with decreasing wire width or height and the temperature-dependent resistivity slightly deviates from that of bulk copper. This is mainly attributed to surface scattering rather than grain boundary scattering. In fact, the influence of grain boundary scattering in these well annealed copper wires is relatively small. In addition, for copper wires with a constant height, a linear dependence of the copper resistivity on 1/width (w) or 1/cross-sectional area (A), namely ρ=ρic+c*∕w (or ρ=ρic+c**∕A), is derived from the classic surface and grain boundary scattering models and validated experimentally. In this simple description, the contributions of different scattering mechanisms, such as surface reflectivity, p, and grain boundary reflection coefficient, R, defect and impurity density, combine together in parameters of ρic and c* (or c**). Especially, c* is a good indicator of scattering strength, from which one can quantitatively analyze the impact of nonsurface scattering contribution with a reference slope of c*=32.14.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call