Abstract

Given the increasing number of battery electric vehicles, the availability of suitable fast-charging infrastructure is crucial. However, designing such sites requires enough capacity in the electric power grid. A major influencing factor on the effect of fast-charging sites on the power grid is the simultaneity factor, i.e. the share of installed power related to the theoretical maximum power. The aim of this work is to investigate optimal simultaneity factors for fast-charging sites depending on various influencing factors. Real-world charging data from the biggest German operator is used in a stochastic approach via Monte-Carlo Simulation. It was found that in most cases, fast-charging sites can be designed with a simultaneity factor of 0.5 to satisfy demand. Applying this would reduce the effect on the power grid as well as reduce costs and time to build charging infrastructure. In consequence, the demand of the rising electric vehicle number can be met more efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.