Abstract

The objective of this study was to investigate the elastic and plastic responses of 3D-printed thermoplastic elastomer (TPE) beams under various bending loads. The study also aimed to develop a self-healing mechanism using origami TPE capsules embedded within an ABS structure. These cross-shaped capsules have the ability to be either folded or elastically deformed. When a crack occurs in the ABS structure, the strain is released, causing the TPE capsule to unfold along the crack direction, thereby enhancing the crack resistance of the ABS structure. The enhanced ability to resist cracks was confirmed through a delamination test on a double cantilever specimen subjected to quasi-static load conditions. Consistent test outcomes highlighted how the self-healing process influenced the development of structural cracks. These results indicate that the suggested self-healing mechanism has the potential to be a unique addition to current methods, which mostly rely on external healing agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.