Abstract

Crack initiation and growth in single-edge notched unidirectional T800s/3900-2 CFRP laminates are studied under stress wave and quasi-static loading conditions. An optical technique called reflection-mode Digital Gradient Sensing is also extended to study fracture mechanics of CFRP by using it in conjunction with ultrahigh-speed photography to perform full-field measurement of crack-tip deformations in the pre- and post-crack initiation regimes. DGS is capable of measuring two orthogonal surface slopes in the crack-tip vicinity as angular deflection of light rays. A method for extracting crack-tip parameters – the instantaneous crack speed and stress intensity factor (SIF) histories – associated with the stationary and propagating cracks using measured surface slopes is presented. The effect of fiber orientation in the range 0°–60° relative to the initial notch and two loading rates are investigated. Nominally mode-I fracture occurs when the fiber orientation is 0° whereas mixed-mode fractures ensue in others. Besides crack initiation occurrence at higher loads as fiber orientation increases, the SIF histories imply strong fiber bridging at low fiber orientations under quasi-static conditions. Furthermore, this CFRP shows significant loading rate dependence during crack growth. Unlike stress wave loading conditions, an increasing crack growth resistance immediately after crack initiation is seen under quasi-static conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call