Abstract

An independent solar photovoltaic (PV) refrigerated warehouse system with ice thermal energy storage is constructed in this paper. In this system, the vapour compression refrigeration cycle is directly driven by a PV array, and the frequency of the compressor varies with the solar radiation intensity. The refrigeration performance and the matching characteristics of the system driven by different PV capacities are studied. The results show that the intensity of solar radiation required for the compressor to work at the same frequency decreases by approximately 7.8% when the ratio of PV capacity to compressor-rated power increases by 10%, and the time required for the temperature in the refrigerated warehouse to drop from ambient temperature to 0°C is reduced by 32 min on average. The energy efficiency ratio of the vapour compression refrigeration subsystem and the coefficient of performance (COP) of the refrigerated warehouse system increase with the ratio of PV capacity to compressor-rated power α. When α increases from 1 to 1.3, the growth rate of the COP is very slow. For the PV direct-drive refrigerated warehouse system with a compressor-rated power of 4.4 kW, the suitable ratio of PV capacity to compressor-rated power α is about 1.3. When the refrigerated warehouse system is driven directly by a 5.4 kW PV array, the overall COP is approximately 0.19. In the cycle mode of refrigeration and cold energy storage during the day and cold energy release at night, the stored cold energy can still meet the refrigeration required by the load for 48 hours after eight days of continuous operation. According to the current market price of cold storage, during the service life of the system, the income per unit volume of cold storage is about 2.2 times the investment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.