Abstract
BackgroundThyroid hormones (THs) are vital in the maintenance of homeostasis and in the control of development. One postembryonic developmental process that is principally regulated by THs is amphibian metamorphosis. This process has been intensively studied at the genomic level yet very little information at the proteomic level exists. In addition, there is increasing evidence that changes in the phosphoproteome influence TH action.ResultsHere we identify components of the proteome and phosphoproteome in the tail fin that changed within 48 h of exposure of premetamorphic Rana catesbeiana tadpoles to 10 nM 3,5,3'-triiodothyronine (T3). To this end, we developed a cell and protein fractionation method combined with two-dimensional gel electrophoresis and phosphoprotein-specific staining. Altered proteins were identified using mass spectrometry (MS). We identified and cloned a novel Rana larval type I keratin, RLK I, which may be a target for caspase-mediated proteolysis upon exposure to T3. In addition, the RLK I transcript is reduced during T3-induced and natural metamorphosis which is consistent with a larval keratin. Furthermore, GILT, a protein involved in the immune system, is changed in phosphorylation state which is linked to its activation. Using a complementary MS technique for the analysis of differentially-expressed proteins, isobaric tags for relative and absolute quantitation (iTRAQ) revealed 15 additional proteins whose levels were altered upon T3 treatment. The success of identifying proteins whose levels changed upon T3 treatment with iTRAQ was enhanced through de novo sequencing of MS data and homology database searching. These proteins are involved in apoptosis, extracellular matrix structure, immune system, metabolism, mechanical function, and oxygen transport.ConclusionWe have demonstrated the ability to derive proteomics-based information from a model species for postembryonic development for which no genome information is currently available. The present study identifies proteins whose levels and/or phosphorylation states are altered within 48 h of the induction of tadpole tail regression prior to overt remodeling of the tail. In particular, we have identified a novel keratin that is a target for T3-mediated changes in the tail that can serve as an indicator of early response to this hormone.
Highlights
Thyroid hormones (THs) are vital in the maintenance of homeostasis and in the control of development
We developed two separate procedures based on differential centrifugation to generate nuclear and cytosolic/mitochondrial/microsomal fractions (Fig. 1A)
Genomic studies on tadpole tail regression have revealed a number of modulated transcripts [5,6,7,8,9]
Summary
Thyroid hormones (THs) are vital in the maintenance of homeostasis and in the control of development. One postembryonic developmental process that is principally regulated by THs is amphibian metamorphosis. This process has been intensively studied at the genomic level yet very little information at the proteomic level exists. Aquatic, herbivorous tadpole transforms into a terrestrial, carnivorous juvenile frog This event requires drastic changes in essentially every organ and tissue of the tadpole and includes: the resorption of larval organs and tissues, remodeling of larval organs into juvenile form, and de novo development of organs and tissues [1]. TH levels gradually increase during prometamorphosis and reach maximal levels at metamorphic climax At this stage, overt remodelling of the tadpole rapidly ensues. Premetamorphic tadpoles can be induced to undergo precocious metamorphosis by exposure to TH [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.