Abstract

The sensitivity of passive microwave observations to the sea surface temperature (SST) is carefully analyzed, with the objective of designing an optimized satellite instrument, MICROwave Wind And Temperature (MICROWAT), dedicated to an “all‐weather” estimation of the SST at high spatial resolution (15 km). Our study stresses the importance of low‐frequency observations around 6 GHz for accurate SST retrieval. Compared to the 11 GHz channel, the 6 GHz channel provides more sensitivity to the low SSTs and offers lower instrument noise, thanks to possibly broader channel bandwidths. However, it requires much larger antenna size for a given spatial resolution. Two instrument concepts have been suggested, one using a classic real aperture antenna and the other using synthetic interferometric antennas. This first analysis shows that 2‐D interferometric systems would be very complex and would not satisfy the user requirements in terms of SST accuracy. A 1‐D interferometric system could be proposed, but its development requires additional investigation. A dedicated conical scanner onboard a microsatellite with a 6 m antenna and channels at 6.9 and 18.7 GHz (both with V and H polarizations) can provide an SST accuracy of 0.3 K with a 15 km spatial resolution, with today's technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.