Abstract

Due to the low spatial resolution of sea surface temperature (TS) retrieval by real aperture microwave radiometers, in this study, an iterative retrieval method that minimizes the differences between brightness temperature (TB) measured and modeled was used to retrieve sea surface temperature with a one-dimensional synthetic aperture microwave radiometer, temporarily named 1D-SAMR. Regarding the configuration of the radiometer, an angular resolution of 0.43° was reached by theoretical calculation. Experiments on sea surface temperature retrieval were carried out with ideal parameters; the results show that the main factors affecting the retrieval accuracy of sea surface temperature are the accuracy of radiometer calibration and the precision of auxiliary geophysical parameters. In the case of no auxiliary parameter errors, the greatest error in retrieved sea surface temperature is obtained at low TS scene (i.e., 0.710 6 K for the incidence angle of 35° under the radiometer calibration accuracy of 0.5 K). While errors on auxiliary parameters are assumed to follow a Gaussian distribution, the greatest error on retrieved sea surface temperature was 1.330 5 K at an incidence angle of 65° in poorly known sea surface wind speed (W) (the error on W of 1.0 m/s) over high W scene, for the radiometer calibration accuracy of 0.5 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call