Abstract
The plastic deformation of lamellar microstructures composed of the two phases γ-TiAl and α 2-Ti 3Al is highly orientation dependent. In this paper we present a homogenized model that takes into account the micromechanical effect of the plate-like morphologies that are often observed in two-phase titanium aluminide alloys. The model is based on crystal elasto-viscoplasticity and 18 deformation systems were implemented that have been identified to govern the plastic flow of the lamellar microstructures. The model is validated against experiments on polysynthetically twinned (PST) crystals and shows good agreement with the data. On a larger length scale, the model is applied to a 64-grain aggregate to investigate the mechanical response of two different kinds of microstructures. Different magnitudes of the kinematic constraints exerted by the densely spaced and highly aligned interfaces are shown to affect the macroscopic flow behavior of the microstructures. The phenomenon of pronounced microplasticity of fully lamellar material as well as the stress variation inside two-phase microstructures are studied quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.