Abstract

In a vanadium redox flow battery, the traditional polyacrylonitrile based graphite felt (GF) electrode suffers the problems of low electrochemical catalytic activity and low specific surface area. To improve the performance of the GF electrode, we prepared phosphorus and sulphur co-doped reduced graphene oxide (PS-rGO) as catalyst with the simple treatment of reduced graphene oxide (rGO) in the mixture of phytic acid and sulfuric acid. The GF electrode modified with PS-rGO (PS-rGO-GF) was characterized by scanning electron microscope, specific surface area, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge tests. The PS-rGO-GF shows enhanced performance toward VO2+/VO2 + redox reaction. The battery with the PS-rGO decorated GF presents an excellent battery performance with the energy efficiency of 81.37% at the current density of 80 mA cm−2 and the corresponding discharge capacity of 772 mAh due to the high catalytic activity of PS-rGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.