Abstract

Background Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.Methodology/Principal FindingsBecause serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.Conclusions/SignificanceDespite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.

Highlights

  • Clostridium botulinum is a taxonomic collection of several distinct species of anaerobic gram positive spore-forming bacteria which produce the most poisonous naturally occurring substance known, botulinum neurotoxin (BoNT) [1]

  • The sequence data analyzed consisted of full-length genomic sequences (1 contig; 3.6–4.0 mb) for four strains, 3 contigs (BoNT/Ba4 strain), or 16 contigs (BoNT/A2 strain)

  • The toxin cluster within the BoNT/A2 strain was identified in the middle of a 985 kb contig

Read more

Summary

Introduction

Clostridium botulinum is a taxonomic collection of several distinct species of anaerobic gram positive spore-forming bacteria which produce the most poisonous naturally occurring substance known, botulinum neurotoxin (BoNT) [1]. Intoxications are long-lived, persisting from several weeks to several months, and victims may require intensive care, including mechanical ventilation, for extended periods of time [6] Because of their extreme toxicity and prolonged effects, botulinum neurotoxins are grouped as CDC category A select agents [7]. Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call