Abstract

Abstract X-ray photoelectron spectroscopy (XPS) was used to examine the interfacial chemistry in polyphenylene sulfide (PPS)/copper bonded laminates. Several surface pretreatments were studied including a simple methanol wash, two acid etches, thermal oxidation and chemical oxidation. Peel test analysis showed poor adhesion to the methanol-washed and acid-etched foils, giving a peel strength of only 3–5 g/mm. XPS analysis of the failure surfaces revealed a large amount of inorganic sulfide at the interface with reduction of the copper oxide. Chemical oxidation using an alkaline potassium persulfate solution gave a matt-black surface consisting of primarily cupric oxide. These samples showed improved adhesion and XPS analysis of the failure surfaces revealed fracture through a mixed PPS/cuprous oxide layer. A simple thermal oxidation yielded a cuprous oxide surface layer and laminates bonded to these surfaces showed a more than ten-fold increase in peel strength. XPS analysis of the failure surfaces showed much lower amounts of interfacial copper sulfide and it was postulated that excess sulfide at the interface was responsible for the poor adhesion observed for other pretreatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.