Abstract

The lumped mass model is derived from a one-mode Galerkin discretization with the Gauss–Lobatto quadrature applied to the non-linear swelling pressure term. Our reduced-order model of the problem is then analyzed to study the essential dynamics of an elastic cantilever Euler–Bernoulli beam subject to the swelling pressure described by Grob’s law. The solutions to the initial value problem for the resulting nonlinear ODE are proved to be always periodic. The numerical solution to the derived lumped mass model satisfactorily matches the finite difference solution of the dynamic beam problem. Including the effect of oscillations at the base of the beam, we show that the model exhibits resonances that may crucially influence its dynamical behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call