Abstract
In operating underwater engines, such as in exploring submarines, the dumping of the exhaust gas out of the engine requires a large portion of the total power, frequently amounting to 25–30% of the power generated. This can be solved by liquefying the exhaust gas and storing it. In the present study, two liquefaction systems are simulated to enhance the overall efficiency; one is a closed cycle diesel cycle and the other is a closed cycle liquefied natural gas (LNG) engine. LNG was chosen as a fuel not only because it is economical but also because its cold energy can be utilized within the liquefaction system. Since a mixture of oxygen and carbon dioxide is used as an oxidizer, liquefying carbon dioxide is the major concern in this study. To further improve this system, the intercooling of the compressor is devised. The power consumed for the liquefaction system is examined in terms of the related properties, including pressure and temperature of the carbon dioxide vessel as a function of the mass fraction of the exhaust gas that enters the compressor. The present study shows that much gain in the power and reduction of the vessel pressure could be achieved in the case of the closed cycle LNG engine. The compression power was remarkably low, typically only 6.3% for the closed cycle diesel engine and 3.4% for the closed cycle LNG engine, respectively, of net engine power. For practically, a design–purpose map of the operating parameters of the liquefaction systems is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.