Abstract
To improve the utilization rate of liquefied natural gas (LNG) cold energy, reduce hydrogen (H2) liquefaction cost, recover waste heat and reduce carbon dioxide (CO2) emission, this study designs a steam methane reforming (SMR) H2 liquefaction and waste heat recovery system based on LNG cold energy for the production of 10 tons of liquid hydrogen (LH2) per day. Parameters analyses and optimization, exergy analyses and economic analyses of the system are carried out and compared with other H2 liquefaction systems. The results show that: under the optimal conditions, the values of specific energy consumption (SEC), coefficient of performance (COP) and exergy efficiency (ƞex) were 5.93 kWh/kg LH2, 0.2225 and 53.24%, respectively. Exergy losses of system is mainly distributed in heat exchange equipment and compressors. Decreasing the heat exchange equipment cold and heat sources inlet temperature difference and reducing the compressors compression ratio were beneficial to reduce equipment exergy losses. The pre-cooling performance of LNG is better than that of liquid nitrogen (LN2) and mixed refrigerant (MR). Compared with the pre-cooling H2 liquefaction system without waste heat recovery, the SEC decreased by 0.26 kWh/kg LH2 and ƞex increased by 2.28%. Research results are conducive to resource conservation and environmental protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.