Abstract

Traditionally, the determination of static load characteristics is one of the main stages in the preparation of a design model of an electric power system. It is especially important to correctly take into account energy-intensive industries, which make a huge contribution to the formation of these characteristics. In particular, the increased interest in hydrogen technologies observed in the world as one of the most promising high-tech areas of energy development, and an increase in the share of the installed capacity of generation units based on renewable energy sources determine the prospects for the development of hydrogen production by water electrolysis. Accordingly, a significant increase in the scale of application of hydrogen technologies, in particular, in accordance with the “Hydrogen Strategy for Climatically Neutral Europe”, the European Commission for the production of “green” hydrogen, determines the task of forming correct mathematical models of these devices in terms planning of modes, analyzing their impact on the parameters of electric power systems. Determination of static load characteristics on the basis of a physical experiment will not allow obtaining a characteristic with a significant increase or decrease in voltage in the node of the electric power system, which occur only in emergency modes of operation of the power system. Therefore, it seems relevant to analyze and determine the electrical characteristics of consumers by mathematical modeling of the power circuit. This article presents the results of correcting the static load characteristic of a high-power electrolyzer used in the production of hydrogen. The analysis of these results obtained with the MATLAB software is carried out using least squares regression to procure polynomial functions of the static load characteristics. According to this analysis, the static characteristics of the considered electrolyzer, being close to linear within the control range, outside the control range acquire parabolic dependences of active and reactive power on voltage. The static load characteristics of the installation are determined by the parameters of the power circuit and the current-voltage characteristic of the rectifiers displacing the vertices of the parabolas from the origin, which should be taken into account to increase the reliability of the design scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.