Abstract

Laser Metal Deposition (LMD) process is a means of producing metal composites with the aid of a laser beam, ejected onto the substrate with the participating powder and fused together after solidification. In this research work, Ti6Al4V alloy is fused with 20 wt % of B4C in order to form metal matrix composites (MMCs). Using the Ytterbium Fibre Laser System powdered at 3000 W, the laser powers were varied between 800 W and 2400 W while all other supporting process parameters were kept constant. The deposited Ti6Al4V-B4C composites were characterized through the surfacing microstructure, microhardness and dry sliding wear. The microstructural properties of the deposited samples were profound, with a Widmanstatten structure of α-Ti, β-Ti and (α+β) Ti phases. The microhardness tests revealed that the composites deposited with a laser power of 2000 W exhibited the highest hardness value and standard deviation of HV 445 ± 61. Furthermore, characterisation revealed that the sample produced with the laser power of 800 W had the lowest wear loss and wear rate of 35.2 × 10–3 mm3 and 6.42 × 10-4 mm3/Nm. However, the motivation for this work is to improve the material properties of the Ti6Al4V alloy for surface engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.