Abstract

The distribution of renewable energy sources is geographically limited. In the process of long-distance transmission, the direct current flowing from a ground electrode into the ground will cause a higher step voltage, which will bring serious security risks to the surrounding industry and life. Accurate calculation of the complex soil electrical model around the grounding electrode is crucial for site selection. Existing simulation software like CDEGS results in significant errors, particularly in complex karst topography. Therefore, constructing a finite element model that accurately reflects the characteristics of geotechnical soil near the DC grounding electrode is an essential but unresolved problem. This paper establishes a soil electrical model for karst topography and explores the impact of cave-type caverns and underground rivers on the step voltage distribution of DC grounding electrodes. These research findings can guide the site selection of DC transmission projects in karst topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.