Abstract
The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distribution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have