Abstract

In this paper, the static characteristics as a function of changes in geometric dimensions of the stator magnetic circuit of the linear stepper actuator with permanent magnets is presented. The stator is built from a series of cylindrical coils encapsulated with ferromagnetic case. The runner is made of permanent magnet rings connected with ferromagnetic spacers. The electromagnetic interac-tion between the stator and the runner for the sequential supply of coils was analyzed. The electro-magnetic force as a function of the geometry of the coils and the ferromagnetic housing for the con-stant graduation of the runner was determined. The maximum, minimum, and average values of the electromagnetic force as a function of the geometric independent variable were determined. The ratio of the mean force to the maximum, and mechanical work calculated as the integral of the force on the path of the runner was adopted as the evaluation criteria. A comparison between the maximum, average and relative values of forces as a function of the geometric dimensions of the stator was made. Keywords: modelling and simulation, linear actuator, finite element method, field calculations, cogging force, magnetic force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.