Abstract
Caspase-3 is generally considered to be the most important terminal shear enzyme in the process of apoptosis, as well as an important part of cytotoxic T lymphocytes (CTL) killing mechanism, which is confirmed to play an important role in vertebrate cell apoptosis and immune system, and is poorly reported in invertebrates. In this paper, we used bioinformatics to perform amino acid multiple sequence alignment and protein structural domain analysis, and constructed a phylogenetic tree to identify the full-length cDNA of the cloned caspase-3 of Cristaria plicata (Named CpCaspase-3). The expression of caspase-1, caspase-7, caspase-8, and caspase-9 was found to be down-regulated by double-stranded RNA interference of CpCaspase-3 in C. plicata. Some degree of disruption of the caspase signaling pathway occurs. The expression of CpCaspase-3 was affected after injection of Lipopolysaccharide (LPS), Peptidoglycan (PGN), polyinosinic-polycytidylic acid (poly(I:C)), and Aeromonas hydrophila. These results were suggested that CpCaspase-3 was involved in the immune response of C. plicata. The wound recovery process of C. plicata was simulated and CpCaspase-3 was found to promote wound recovery. An autophagy inhibition and autophagy activation model of mussels was constructed, where apoptosis and autophagy undergo crosstalk, and inhibition of autophagy induces the onset of apoptosis, and similarly autophagy activation inhibits the process of apoptosis instead. In addition, a recombinant CpCaspase-3-pEGFP-C1 plasmid was constructed for subcellular localization experiments and found that CpCaspase-3 was distributed in both the nucleus and the cytoplasm. This paper aims to unveil the immune mechanism of C. plicata and provide a theoretical basis for the healthy culture of shellfish.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have