Abstract

Surface cracks are easily produced after friction between continuous casting billets and copper layers in mold cavity, but the formation mechanism is not clear. Based on a steel-based hot-dip copper plating experiment, this study simulated the action behavior of copper adhering to the surface of a continuous casting billet after mold wear and systematically analyzed the formation mechanism of cracks caused by copper infiltration on the surface of the continuous casting billet. It is shown that when the copper liquid adheres to the surface of the slab, in addition to the diffusion of Cu in the steel, Fe is also dissolved in the copper liquid, accelerating the solidification of the copper liquid on the surface of the slab and forming a stable fusion combination between copper and steel. At the same time, due to the enrichment of the Fe-C phase and a large number of vacancies at the grain boundary, the grain boundary becomes the dominant area of copper–steel fusion bonding. For a continuous casting process in which the temperature is kept higher than 900 ℃, Cu’s solubility is high and the diffusion coefficient is very low in Fe, which makes it very difficult for Cu accumulated in the grain boundary to diffuse into the steel matrix during the continuous casting process, resulting in a grain boundary with a greatly weakened strength becoming the origin of cracks in the bending and straightening deformation of the billet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call