Abstract

The exciton states in cuprous oxide show a pronounced fine structure splitting associated with the crystal environment and the resulting electronic band structure. High‐resolution spectroscopy reveals an especially pronounced splitting of the yellow D excitons with one state pushed above any other state with the same principal quantum number. This large splitting offset is related to a strong mixing of these D states with the 1S exciton of the green series, as suggested by previously published calculations. Here, a detailed comparison of this theory with experimental data is given, which leads to a complete reassignment of the experimentally observed D exciton lines. The origin of different amounts of green admixture to D‐envelope states is deduced by analyzing the different terms of the Hamiltonian. The yellow–green mixing leads to level repulsion and induces an exchange interaction splitting to D‐envelope states, from which one of them becomes the highest state within each multiplet. Furthermore, the assignment of D exciton states according to their total angular momentum F is given and corrects an earlier description given in a former study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.