Abstract

In order to further understand the influence of high temperature shock on the microbial community structure of activated sludge during the process of nitrite oxidation, the enriched nitrifying activated sludge under different NO2--N concentration was taken as the research object in this study. 16S rRNA high-throughput sequencing technology was used to analyze the changes in the microbial community abundance and structural characteristics of activated sludge by changing the environmental temperature. The results of high-throughput sequencing showed that microorganisms were more likely to grow at 25℃, and the diversity of the microbial community in the activated sludge was the most abundant. With increased temperature, the richness, evenness, and diversity of the flora in the system decreased. In addition, it was found that the main nitrifying bacterium in the system was Nitrospira of Nitrospirae, whereby 35℃ was more suitable for its growth. Meanwhile, a higher temperature also caused differences in the structure of non-nitrifying functional microorganisms (e.g., Bacteroidetes, Chlorofulexi, Halomonas, and Pseudomonas) in the activated sludge. The results of this study provide some theoretical reference for the investigation of the distribution characteristics of microbial flora during the process of nitrite oxidation under high temperature shock, and can also be used as reference for relevant high temperature shock tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call