Abstract

Fluoride pollution in water has become a global challenge. This challenge especially affects China as a country experiencing serious fluoride pollution. While the have been past studies on the spatial distribution of fluoride, there has been less attention on different forms of fluoride. This study collected 176 samples (60, 40, and 76 ice, water, and sediment samples, respectively) from Lake Ulansuhai during the freezing period. The occurrence and spatial distribution characteristics of fluoride in lake ice-water-sediment were explored using Kriging interpolation, Piper three-line diagram, and Gibbs diagram analysis methods. The migration and transformation of fluoride during the freezing period were revealed and the factors influencing fluoride concentration in the water body were discussed considering the hydrochemical characteristics of lake surface water. The results showed that the average fluoride concentrations in the upper ice, middle ice and lower ice were 0.18, 0.09, and 0.12 mg/L, respectively, decreasing from north to south in the lake. The average concentrations of fluoride in surface water and bottom water were 0.63 and 0.83 mg/L, respectively. The concentrations of fluoride in ice and water were within the World Health Organisation drinking water threshold of 1.50 mg/L and the Class III Chinese surface water standard (GB3838-2002). The average sediment total fluorine was 1344.38 ± 200 mg/kg, significantly exceeding the global average (321 mg/kg) and decreasing with depth. The contents of water soluble, exchangeable, Fe/Mn bound, organic bound, and residual fluorides were 40.22–47.18, 13.24–43.23, 49.52–160.48, and 71.59–173.03 mg/kg, respectively. There was a significant positive correlation between fluoride concentration in ice and that in water. The change in fluoride concentration in water was mainly due to specific climatic and geographical conditions, pH, hydrochemical characteristics and ice sealing. This study is of great significance for the management of high-fluorine lakes in arid and semi-arid areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call