Abstract

Abstract This paper looks at the heavy-haul combined train composed of different types of locomotives and its distributed power control system with a combination of 800 MHz and TD-LTE wireless communication. It analyses some key characteristic parameters that affect the synchronism and communication of the differential wireless multi-traction synchronous control systems for heavy-haul combined trains. At the same time, in order to reduce the latency of instruction and information transfer between different types of locomotives, improve the time-limit certainty of wireless transmission and optimize the control quality of multi-traction control systems for heavy-haul combined trains, a synchronism optimization strategy based on the Markov decision process on the basis of Petri networkconstruction is proposed. Relevant experiments and tests are carried out to verify the effectiveness of the synchronism optimization of the control system, which provides a guarantee for improving the differential wireless multi-traction synchronous control system for combined trains and optimizing train control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call