Abstract

As urbanization continues to accelerate, the urban heat island effects have become one of the most important issues affecting the urban environment and people’s living experience. Numerous studies have shown that urban parks and green spaces can effectively alleviate the problem of the urban heat island effect and provide cooling and humidifying effects. Vegetation communities are a fundamental part of urban parklands, and multi-layered vegetation communities are considered to have better cooling and humidifying effects. Previous studies have focused on comparative analyses between different cover types of vegetation communities but have not explored the differences in the cooling and humidifying effects of multi-layered vegetation communities of the same cover type. Therefore, the Olympic Forest Park in Beijing was selected as the subject of this study, and multi-layered vegetation-covered (tree-shrub-grass) with different degrees of densities and uncovered squares were selected for the control and comparison. The cooling and humidifying effects of multi-layered vegetation communities with different canopy densities at different times of the day through field measurements were studied, and the influencing factors for this were analyzed. The results show that the tree cover is the core factor affecting temperature; the degree of the canopy density of multi-layered vegetation communities is significantly and positively correlated with the intensity of cooling and humidification, and the cooling and humidifying effect of multi-layered vegetation communities increases as the degree of canopy density increases. The results of this study can provide some references for the planning and design of urban parks and green spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.