Abstract

We report a full (3D) micromagnetic simulation of a set of 100 ferrite (Fe 3O 4) cylindrical dots, arranged in a 10 by 10 square (planar) array of side 3.27 μ m , excited by an external in-plane magnetic field. The resulting power spectrum of magnetic excitations and the dynamical magnetization field at the resulting resonance modes were investigated. The absorption spectrum deviates considerably from that of a single particle reference simulation, presenting a mode-shifting and splitting effect. We found an inversion symmetry through the center of the array, in the sense that each particle and its inversion counterpart share approximately the same magnetization mode behavior. Magnonic designs aiming at synchronous or coherent tunings of spin-wave excitations at given spatially separated points within a regular square array may benefit from the new effects here described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.