Abstract

The paper captures the effect of structure and the applicability of compaction models using the cold compaction of a TiH2-SS316L composite powder prepared by high energy mechanical milling. The composite blend was cold pressed uniaxially to pressures of up to 1250MPa. The compressibility of the composite blend was evaluated by fitting the experimental data to the most commonly used compaction models of Heckel, the Kawakita-Lüdde, the Cooper-Eaton, the Ge, and the Panelli-Filho compaction equations. Among the models, the Kawakita-Lüdde and Cooper-Eaton models fitted the experimental data very well with a good correlation (the correlation coefficient greater than 0.99) throughout the entire pressure range under investigation. The nature and mechanisms responsible for the densification during cold compaction are discussed. The Heckel, Ge, Panelli-Filho, and Cooper-Eaton model analysis showed that the dominant compaction mechanisms for composite blend were rearrangement of particles followed by elastic and plastic deformation. The results are discussed by way of a comprehensive model intercomparison study of the cold compaction behaviour using existing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.