Abstract
State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b 6 f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light–induced reduction of this bond may occur through a transthylakoid thiol–reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b 6 f assembly and heme biogenesis.
Highlights
Photosynthetic organisms are constantly subjected to changes in light conditions
Under low light, photosynthetic organisms optimize the absorption capacity of their antenna systems. This is especially true when changes in light quality occur that lead to the preferential stimulation of either photosystem II (PSII) or photosystem I (PSI), which are linked through the photosynthetic electron transport chain
The protein-modifying domain of Stt7 is exposed to the outer side of the thylakoid membrane, whereas the domain critical for regulation of its activity lies on the inner side of the thylakoid membrane
Summary
Photosynthetic organisms are constantly subjected to changes in light conditions. These organisms have developed different mechanisms to rapidly acclimate to this changing environment. Under low light, photosynthetic organisms optimize the absorption capacity of their antenna systems This is especially true when changes in light quality occur that lead to the preferential stimulation of either photosystem II (PSII) or photosystem I (PSI), which are linked through the photosynthetic electron transport chain. Under these conditions, balancing of the light excitation energy between the antenna systems of PSII and PSI occurs through a process called state transitions [2,3,4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.