Abstract

Thylakoid protein phosphorylation regulates state transition and PSII protein turnover under light‐dependent redox control via a signal transduction system. The redox‐dependent activation/deactivation of the membrane‐bound protein kinase(s), mostly localized in the grana partitions, differs for the various phosphoproteins. Reduction of the plastoquinone pool may be sufficient to activate phosphorylation of few of these proteins. Phosphorylation of LHCII, requires the presence of the cytochrome bf complex in an ‘activating mode’ characterized by the reduction of its high potential path components and ability to interact with a reduced plastoquinol without oxidizing it. Activation and maintenance of this kinase activity is considered to involve alternate interactions with a cytochrome bf in its activating mode and with the substrate PSII(LHCII). The segregation of the thylakoid components into grana and stroma partitions appears to be mandatory for the kinase activation process. The protein substrate specificity and kinetics differs for various kinases. The thylakoid redox‐controlled kinase(s) have not yet been isolated. Preparations highly enriched in kinase activity capable to phosphorylate LHCII and PSII core proteins, contain two kinase active bands, resolved by denaturing electrophoresis and renaturation, and having apparent molecular masses of about 53 and 66 kDa. The roughly estimated abundance of these putative kinase(s) in the grana partitions may be compatible with a ratio of kinase(s): PSII(LHCII) dimers:cytochrome bf dimers in the range of 1:60:30 and a ratio of kinase:phosphorylation sites of about 1:2000. Only about 10–20% of these sites are phosphorylated during state transition. The low turnover rate of the LHCII kinase(s) (< 5) may be due to hindrance of the required random lateral migration within the grana domain rich in tightly packed PSII(LHCII) and cytochrome bf complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.