Abstract

Abstract This paper presents numerical studies of flame structure in a well-known nonpremixed H 2 /N 2 jet flame. A detailed kinetic mechanism is implemented to large eddy simulation approach with linear eddy model as subgrid closure method. The numerical techniques are validated against experimental data in temperature profiles, specie mass fractions and mixture fractions. Reaction rates are calculated at the flame base to investigate the dominant chemistry for a variety of conditions of fuel and coflow. The results show that the decrease of hydrogen concentration leads to chemical pathways changing at the flame base that is responsible for the autoignition. Oxygen content variation in the coflow affects the reaction rates but does not change the dominant chemistry. Furthermore, water addition to the coflow is found to enhance NO x formation by promoting radical production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.