Abstract

The aim of this paper is the application of beam element representations for structural skin reinforcements in flexible full aircraft FE models used in ditching simulations. To verify this approach, it was initially analyzed on flexible reinforced bottom-aircraft panels under guided ditching conditions, considering also structural mesh size variations and partly corresponding fluid mesh densities. For this analysis two different numerical methods were used for comparisons, the coupled Finite Element-Smoothed Particle Hydrodynamics and the Arbitrary Lagrangian Eulerian methods. For the generation of the full aircraft model a multidisciplinary process chain approach and a standardized data format description are used. The beam element representations are considered for the modelling of skin reinforcement as well as other structures like cabin and cargo floor structures. By this approach, first time feasible full aircraft ditching simulations and the subsequent analysis of both global kinematics and the local fuselage structural response could be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call