Abstract

AbstractThe factors responsible for the size of Antarctic ozone hole in November are analyzed. Comparing two samples of anomalously large and small November ozone hole with respect to 1980–2017 climatology in November, the results show that the anomalously large ozone hole in austral late winter is not a precondition for the anomalously large ozone hole in November. The size of Antarctic ozone hole in November is mainly influenced by dynamical processes from the end of October to mid-November. During large November ozone hole events, weaker dynamical ozone transport appears from the end of October to mid-November, which is closely related to planetary wave divergence in the stratosphere between 60°S and 90°S. Further analyses indicate that the wave divergence is partially attributed to less upward propagation of planetary waves from the troposphere, which is associated with weak baroclinic disturbances at the end of October. Subsequently, zonal wind speed in the upper stratosphere intensifies, and the distance between critical layer (U=0) and wave reflecting surfaces becomes larger. As a result, more planetary waves are reflected and then wave divergence enhances. The processes responsible for the anomalously small Antarctic ozone holes in November are almost opposite to those for the anomalously large Antarctic ozone holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call